Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Experimental Hematology ; (6): 184-187, 2009.
Article in Chinese | WPRIM | ID: wpr-302170

ABSTRACT

The purpose of this study was to investigate the expression of human Factor IX (hFIX) in retrovirus-transfected human umbilical cord tissue derived mesenchymal stem cells (hUCT-MSCs). The pLEGFP-N1-hFIX vector was generated by cloning a 3.0 kb Bgl II-BamH I fragment from the pIRES2-EGFP-hFIX plasmid containing the hFIX cDNA and part of intron 1 of hFIX in pLEGFP-N1 vector. The retroviral supernatants were produced from the Phoenix packaging cell line and then infected the hUCT-MSCs. After selection with G418 for 10 day, the expression of FIX was detected by ELISA and Western blot. The biological activity of FIX was determined by the clotting assay employing human Factor IX-deficient plasma. The results showed that compared with the activity of pooled human normal plasma (100%), transduced cells produced biologically active hFIX with 100-130% activity in two-day culture supernatant and expressed hFIX at levels of 2.68 +/- 0.36 microg/10(6) cells/24 hours after G418 selection for 10 days. The secretion of hFIX into culture supernatant was also confirmed by Western blot analysis. It is concluded that genetically modified hUCT-MSCs can express biologically active hFIX and thus serve as an efficient drug delivery vehicle carrying hFIX used as a way of somatic gene therapy for hemophilia B.


Subject(s)
Humans , Cell Line , Factor IX , Genetics , Gene Expression , Genetic Therapy , Genetic Vectors , Mesenchymal Stem Cells , Retroviridae , Genetics , Transfection
2.
Journal of Experimental Hematology ; (6): 266-270, 2009.
Article in Chinese | WPRIM | ID: wpr-302151

ABSTRACT

Bmi-1 is a transcriptional repressor, which belongs to the polycomb group family. It has been demon- started that over-expression of Bmi-1 occurs in a variety of cancers, including several types of leukemia. Bmi-1 gene plays a key role in regulation of self-renewal in normal and leukemic stem cells. Acute myeloid leukemic cells lacking Bmi-1 undergo proliferation arrest and show signs of differentiation and apoptosis, which leads to the proposal of Bmi-1 as a potential target for therapeutic intervention in leukemia. The purpose of this study was to investigate the effect of short hairpin RNA (shRNA) targeting Bmi-1 on functions of K562 cell line. The shRNA eukaryotic expression vector targeting Bmi-1 was constructed and transfected into K562 cells through lipofectamine 2000. The mRNA and protein levels of Bmi-1 were detected by PCR and Western blot respectively. The proliferation of K562 after Bmi-1 silencing was measured by using MTT assay and clone formation assay. The cell cycle was detected by flow cytometry. The results indicated that among the four shRNA designed, there was a shRNA which efficiently interfered with the expression of Bmi-1. The results of PCR and Western blot validated that the Bmi-1 gene of K562 cells transfected with such a Bmi-1 shRNA was suppressed successfully. Although levels of Bmi-1 mRNA and protein were significantly reduced, delivery of this siRNAs had no effect on cell viability or growth. Flow cytometry analysis suggested that Bmi-1 inhibition did not affect the cell cycle. It is concluded that the suppression of Bmi-1 expression is not able to reduce proliferation of K562 cells, suggesting existence of some other parallel signaling pathways, which are fundamental for leukemic transformation and are independent of Bmi-1 over-expression. Bmi-1 over-expression may play a secondary role in chronic myeloid leukemia transformation.


Subject(s)
Humans , Cell Proliferation , Cell Survival , Genetic Vectors , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Genetics , Nuclear Proteins , Genetics , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins , Genetics , RNA Interference , RNA, Small Interfering , Genetics , Repressor Proteins , Genetics , Transfection
3.
Journal of Experimental Hematology ; (6): 1372-1375, 2008.
Article in Chinese | WPRIM | ID: wpr-234231

ABSTRACT

The study was aimed to investigate the potential immunotherapeutical values of umbilical cord tissue-derived mesenchymal stem cells (UC-MSC) on patients with chronic idiopathic thrombocytopenic purpura (ITP). UC-MSC was cocultured in vitro with splenocytes isolated from ITP patients who experienced splenectomy. The level of IgG antiplatelet antibody (PAIgG) was determined by a competitive micro-enzyme-linked immunosorbent assay (ELISA) method. The proliferation of platelet-reactive CD4+ T lymphocytes was also measured in the presence of UC-MSCs. The results showed that UC-MSCs could stimulate the spontaneous secretion of PAIgG in supernatants; In the platelet-inducing condition, UC-MSC inhibited the production of PAIgG at a low ratio of 1 UC-MSC to 100 splenocytes, but promoted at a high proportion of 1 UC-MSC to 10 splenocytes. Moreover, UC-MSC exerted a suppressive effect on proliferation of platelet-reactive T helper cells in a dose-dependent manner. It is concluded that the UC-MSCs can regulate secretion of antiplatelet antibodies in vitro. Its concrete regulation mechanism and potential immunotherapeutical value are need to further study.


Subject(s)
Humans , Infant, Newborn , Antibodies , Metabolism , Blood Platelets , Allergy and Immunology , CD4-Positive T-Lymphocytes , Cell Biology , Cell Proliferation , Lymphocyte Activation , Mesenchymal Stem Cells , Physiology , Purpura, Thrombocytopenic, Idiopathic , Metabolism , Spleen , Cell Biology , Umbilical Cord , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL